Path to this page:
./
math/py-scikit-learn,
Machine learning algorithms for Python
Branch: CURRENT,
Version: 1.5.2,
Package name: py312-scikit-learn-1.5.2,
Maintainer: pkgsrc-usersscikit-learn is a Python module integrating classic machine learning
algorithms in the tightly-knit scientific Python world (numpy, scipy,
matplotlib). It aims to provide simple and efficient solutions to
learning problems, accessible to everybody and reusable in various
contexts: machine-learning as a versatile tool for science and
engineering.
Required to run:[
math/lapack] [
math/blas] [
devel/py-setuptools] [
math/py-scipy] [
math/py-numpy] [
devel/py-cython] [
lang/gcc7] [
lang/python37] [
devel/py-joblib]
Required to build:[
pkgtools/cwrappers]
Master sites:
Filesize: 6837.578 KB
Version history: (Expand)
- (2024-09-16) Updated to version: py312-scikit-learn-1.5.2
- (2024-08-27) Updated to version: py312-scikit-learn-1.5.1
- (2024-08-03) Updated to version: py311-scikit-learn-1.5.1
- (2023-11-13) Updated to version: py311-scikit-learn-1.3.2nb1
- (2023-11-01) Updated to version: py311-scikit-learn-1.3.2
- (2023-09-27) Updated to version: py311-scikit-learn-1.3.1
CVS history: (Expand)
2023-11-13 11:42:42 by Thomas Klausner | Files touched by this commit (4) |
Log message:
py-scikit-learn: fix build on NetBSD
|
2023-11-06 09:40:01 by Thomas Klausner | Files touched by this commit (1) |
Log message:
py-scikit-learn: revert previous
Committed by accident.
|
2023-11-01 19:39:36 by Adam Ciarcinski | Files touched by this commit (3) | |
Log message:
py-scikit-learn: updated to 1.3.2
Version 1.3.2
=============
**October 2023**
Changelog
---------
:mod:`sklearn.datasets`
.......................
- |Fix| All dataset fetchers now accept `data_home` as any object that implements
the :class:`os.PathLike` interface, for instance, :class:`pathlib.Path`.
:pr:`27468` by :user:`Yao Xiao <Charlie-XIAO>`.
:mod:`sklearn.decomposition`
............................
- |Fix| Fixes a bug in :class:`decomposition.KernelPCA` by forcing the output of
the internal :class:`preprocessing.KernelCenterer` to be a default array. When the
arpack solver is used, it expects an array with a `dtype` attribute.
:pr:`27583` by :user:`Guillaume Lemaitre <glemaitre>`.
:mod:`sklearn.metrics`
......................
- |Fix| Fixes a bug for metrics using `zero_division=np.nan`
(e.g. :func:`~metrics.precision_score`) within a paralell loop
(e.g. :func:`~model_selection.cross_val_score`) where the singleton for `np.nan`
will be different in the sub-processes.
:pr:`27573` by :user:`Guillaume Lemaitre <glemaitre>`.
:mod:`sklearn.tree`
...................
- |Fix| Do not leak data via non-initialized memory in decision tree pickle \
files and make
the generation of those files deterministic. :pr:`27580` by :user:`Loïc \
Estève <lesteve>`.
|
2023-09-27 12:57:33 by Adam Ciarcinski | Files touched by this commit (2) | |
Log message:
py-scikit-learn: updated to 1.3.1
Version 1.3.1
=============
Changed models
--------------
The following estimators and functions, when fit with the same data and
parameters, may produce different models from the previous version. This often
occurs due to changes in the modelling logic (bug fixes or enhancements), or in
random sampling procedures.
- |Fix| Ridge models with `solver='sparse_cg'` may have slightly different
results with scipy>=1.12, because of an underlying change in the scipy solver
Changes impacting all modules
-----------------------------
- |Fix| The `set_output` API correctly works with list input.
Changelog
---------
:mod:`sklearn.calibration`
..........................
- |Fix| :class:`calibration.CalibratedClassifierCV` can now handle models that
produce large prediction scores. Before it was numerically unstable.
:mod:`sklearn.cluster`
......................
- |Fix| :class:`cluster.BisectingKMeans` could crash when predicting on data
with a different scale than the data used to fit the model.
- |Fix| :class:`cluster.BisectingKMeans` now works with data that has a single \
feature.
:mod:`sklearn.cross_decomposition`
..................................
- |Fix| :class:`cross_decomposition.PLSRegression` now automatically ravels the \
output
of `predict` if fitted with one dimensional `y`.
:mod:`sklearn.ensemble`
.......................
- |Fix| Fix a bug in :class:`ensemble.AdaBoostClassifier` with \
`algorithm="SAMME"`
where the decision function of each weak learner should be symmetric (i.e.
the sum of the scores should sum to zero for a sample).
:mod:`sklearn.feature_selection`
................................
- |Fix| :func:`feature_selection.mutual_info_regression` now correctly computes the
result when `X` is of integer dtype.
:mod:`sklearn.impute`
.....................
- |Fix| :class:`impute.KNNImputer` now correctly adds a missing indicator column in
``transform`` when ``add_indicator`` is set to ``True`` and missing values are \
observed
during ``fit``.
:mod:`sklearn.metrics`
......................
- |Fix| Scorers used with :func:`metrics.get_scorer` handle properly
multilabel-indicator matrix.
:mod:`sklearn.mixture`
......................
- |Fix| The initialization of :class:`mixture.GaussianMixture` from user-provided
`precisions_init` for `covariance_type` of `full` or `tied` was not correct,
and has been fixed.
:mod:`sklearn.neighbors`
........................
- |Fix| :meth:`neighbors.KNeighborsClassifier.predict` no longer raises an
exception for `pandas.DataFrames` input.
- |Fix| Reintroduce :attr:`sklearn.neighbors.BallTree.valid_metrics` and
:attr:`sklearn.neighbors.KDTree.valid_metrics` as public class attributes.
- |Fix| :class:`sklearn.model_selection.HalvingRandomSearchCV` no longer raises
when the input to the `param_distributions` parameter is a list of dicts.
- |Fix| Neighbors based estimators now correctly work when \
`metric="minkowski"` and the
metric parameter `p` is in the range `0 < p < 1`, regardless of the \
`dtype` of `X`.
:mod:`sklearn.preprocessing`
............................
- |Fix| :class:`preprocessing.LabelEncoder` correctly accepts `y` as a keyword
argument.
- |Fix| :class:`preprocessing.OneHotEncoder` shows a more informative error message
when `sparse_output=True` and the output is configured to be pandas.
:mod:`sklearn.tree`
...................
- |Fix| :func:`tree.plot_tree` now accepts `class_names=True` as documented.
- |Fix| The `feature_names` parameter of :func:`tree.plot_tree` now accepts any \
kind of
array-like instead of just a list.
|
2023-07-17 21:51:04 by Adam Ciarcinski | Files touched by this commit (3) | |
Log message:
py-scikit-learn: updated to 1.3.0
1.3.0
Metadata Routing
HDBSCAN: hierarchical density-based clustering
TargetEncoder: a new category encoding strategy
Missing values support in decision trees
New display model_selection.ValidationCurveDisplay
Gamma loss for gradient boosting
Grouping infrequent categories in preprocessing.OrdinalEncoder
|
2023-07-01 10:37:47 by Thomas Klausner | Files touched by this commit (105) | |
Log message:
*: restrict py-numpy users to 3.9+ in preparation for update
|
2023-05-09 10:13:34 by Adam Ciarcinski | Files touched by this commit (1) |
Log message:
py-scikit-learn: remove unused patch
|
2023-05-09 10:07:34 by Adam Ciarcinski | Files touched by this commit (3) | |
Log message:
py-scikit-learn: updated to 1.2.2
Version 1.2.2
Changelog
sklearn.base
Fix When set_output(transform="pandas"), base.TransformerMixin \
maintains the index if the transform output is already a DataFrame.
sklearn.calibration
Fix A deprecation warning is raised when using the base_estimator__ prefix to \
set parameters of the estimator used in calibration.CalibratedClassifierCV.
sklearn.cluster
Fix Fixed a bug in cluster.BisectingKMeans, preventing fit to randomly fail due \
to a permutation of the labels when running multiple inits.
sklearn.compose
Fix Fixes a bug in compose.ColumnTransformer which now supports empty selection \
of columns when set_output(transform="pandas").
sklearn.ensemble
Fix A deprecation warning is raised when using the base_estimator__ prefix to \
set parameters of the estimator used in ensemble.AdaBoostClassifier, \
ensemble.AdaBoostRegressor, ensemble.BaggingClassifier, and \
ensemble.BaggingRegressor.
sklearn.feature_selection
Fix Fixed a regression where a negative tol would not be accepted any more by \
feature_selection.SequentialFeatureSelector.
sklearn.inspection
Fix Raise a more informative error message in inspection.partial_dependence when \
dealing with mixed data type categories that cannot be sorted by numpy.unique. \
This problem usually happen when categories are str and missing values are \
present using np.nan.
sklearn.isotonic
Fix Fixes a bug in isotonic.IsotonicRegression where \
isotonic.IsotonicRegression.predict would return a pandas DataFrame when the \
global configuration sets transform_output="pandas".
sklearn.preprocessing
Fix preprocessing.OneHotEncoder.drop_idx_ now properly references the dropped \
category in the categories_ attribute when there are infrequent categories.
Fix preprocessing.OrdinalEncoder now correctly supports encoded_missing_value or \
unknown_value set to a categories’ cardinality when there is missing values in \
the training data.
sklearn.tree
Fix Fixed a regression in tree.DecisionTreeClassifier, \
tree.DecisionTreeRegressor, tree.ExtraTreeClassifier and tree.ExtraTreeRegressor \
where an error was no longer raised in version 1.2 when min_sample_split=1.
sklearn.utils
Fix Fixes a bug in utils.check_array which now correctly performs non-finite \
validation with the Array API specification.
Fix utils.multiclass.type_of_target can identify pandas nullable data types as \
classification targets.
|